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Parametric models have been used widely since a long time for A _ , , .
a variety of important tasks, such as animation and image NIBNIENIERNE NIBNIBNIRNE
‘econstruction. The mojor tagture of these models s the @ e I —
pbreakdown of fthe Image surface Into shape and pose
components. In [1], the authors make use of self-consistency, Fig. 3: Proposed Architecture
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Cross-consistency and ARA.\P (As-Rigid-As osmble.) [2] blocks to Results and Conclusion
learn shape and pose (disentangled from the image) spaces
from meshes of these images. While doing this, they make use of The authors have reported a mean error of 19.43, when using
spiral convolution. We |look 1o have an alternative approach by ARAP solver in the implementation, as compared to 54.44 for the
Usiqg Mesh POO”ng [3] and GCNs [4], N its p|Oce. SOTA Geometric DiseﬂTOnglemeﬂT Variational Autoencoder
(GDVAE) [7].
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Fig. 1: Schematic Overview of Shape and Pose disentangling mesh auto-encoder [1] Shape Source

Spiral Convolution and Proposed Alternatives ( Lﬂ)

Transferred Pose

Fig. 5: Transferred Pose from pose sources to shape sources on COMA dataset [1]

Fig. 2: (a) Spiral Convolution [5]; (b) Mesh Pooling [3] and (c) Graph Convolutional Neural Networks [6]

Mesh CNN's operates on the edges of the mesh which contain Future Work

more geometric information than vertices or faces. Pooling

collapses certain edges resulting in smoothing and complexity Currently, we have implemented pose transter by using spiral

reduction. It learns which edges to collapse by the Mesh CNN convolution as the operator for finding the nearest pose for a

nefwork. given shape source. Using the shape source and the pose
source, we implemented the fransfer of pose to different

Graph CNN's are the generalization of CNN's wrt the distance subjects.

metric. While CNN'’s are built for ordered data and Euclidean

distances i.e. the rectangular grid of pixels, Graph CNN'’s are for In future work, we plan to change this spiral convolution with

data where the number of neighbours vary for each node and Mesh Pooling, used in MeshCNNs; and Graph CNNs (efficient

they are unordered too. variants of CNNs) to observe the performance of the proposed

architecture.
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Fig. 2: Distribution of the Datasets Used [1]
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