
Project Course
CS-399

Supervised By: Prof. Joycee Mekie

POSITs and Approximate Computing for Neural
Networks

Jinay Dagli and Neel Shah

What is POSIT Number System?

The POSIT number system is composed of a run-time varying exponent component,
which is defined by a composition of varying length ‘‘regime-bit’’ and ‘‘exponent-bit’’
(with a maximum size of ES bits, the exponent size). This also makes the fraction part
to vary at run-time in size and position.

Why POSIT?

The IEEE 754 standard has been used in various applications over the years. The
POSIT system addresses the flaws or shortcomings of the IEEE 754, and tries to
overcome them.

Limitations of floating-point representation
(IEEE 754)

● There is no guarantee of identical results across different computer systems.
● It has the use of NaN(not a number) values, which is not very efficient.
● Invisible Rounding Errors: Individual operands are rounded off in calculations,

which sometimes leads to the breaking of arithmetic laws (associativity and
distributivity).

● Accuracy is good only across a certain range.
● IEEE 754 makes use of overflow and underflow.

Very large numbers -> rounded off to infinity

Very small numbers -> rounded off to zero

Advantages of POSIT
● It doesn’t overflow or underflow.
● There is no NaN(Not a Number) case in posits.
● Provides more accurate answers as compared to IEEE floating point numbers

with smaller number of bits.
● Certain properties of posits suggests that it may be possible to perform deep

learning tasks using posits.
● Deep learning algorithms have limited memory bandwidth, so posits help in cut

down of memory bandwidth as compared to IEEE floating point.

Inefficiencies of POSIT

The floating-point format has a fixed bit format for exponent and fraction (or
significand). Due to this reason, for extracting the values of exponent and fraction,
we can decode it parallely. But since the bits for exponent and fraction are not fixed
in a posit representation, we can only decode it serially.

IEEE 754 Standard Posit representation

Single Precision:

Double Precision:

Posit<n,es> representation:

n represents total number of bits.

Es is the size of exponent.

IEEE 754 Standard Posit representation

Single Precision:

Double Precision:

Posit<n,es> representation:

Representation: (-1) ŝ x (2 (̂e-127)) x 1.m

Where s: Sign bit ; e:Exponent and

m:Mantissa

Representation: (-1) ŝ x (2 (̂e-1023)) x 1.m

where s: Sign bit ; e:Exponent and

m:Mantissa

Regime consists of a series of all 0s or all 1s.

If a bit is represented as r, then regime ends
when the bit becomes r’.
Let m be this number of identical bits.

If leading 0s: let k = -m

If leading 1s: let k = m-1
Let a new term useed be 2 (̂2 (̂es)).

Representation: (-1) ŝ x (useed k̂) x 2 ê x

(1+f)

where s:Sign bit ; e:Exponent ; f:Fraction

1. Posit-to-FP
The posit to floating-point convertor takes a 32-bit number

in posit representation as input and gives the number in

floating point representation as the output.

Parameters: N = size of the representation
E = Exponent in FP representation
es = Exponent size in the posit representation
in = 32-bit input FP input
out = 32-bit output in posit representation

Code reference: Posit-HDL-Arithmetic/Posit_to_FP.v at master · manish-kj/Posit-HDL-Arithmetic · GitHub

https://github.com/manish-kj/Posit-HDL-Arithmetic/blob/master/Posit_to_Floating-Point_Convertor/Posit_to_FP.v

Simulation Results:

Resource Utilization Available Utilization %

LuT 150 133800 0.11

IO 32 400 8

Utilization

Power

Total On-Chip Power 9.27 W

Junction Temperature 42.3℃

Thermal Margin＊ 42.7℃ (22.5 W)

Implementation Results:

Thermal Margin: Thermal margin indicates how far the current operating temperature is below the maximum operating
temperature of the processor.

2. FP-to-Posit
The floating point to posit convertor takes a 32-bit number

in floating point representation as input and gives the

number in posit representation as the output.

Parameters: N = size of the representation
E = Exponent in FP representation
es = Exponent size in the posit representation
in = 32-bit input in posit representation
out = 32-bit FP output

Code reference:Posit-HDL-Arithmetic/Floating-Point_to_Posit_Convertor at master · manish-kj/Posit-HDL-Arithmetic · GitHub

https://github.com/manish-kj/Posit-HDL-Arithmetic/tree/master/Floating-Point_to_Posit_Convertor

Simulation Results:

Resource Utilization Available Utilization %

LuT 107 133800 0.08

IO 32 400 8

Utilization

Power

Total On-Chip Power 11.214 W

Junction Temperature 46°C

Thermal Margin＊ 39°C (20.6 W)

Implementation Results:

Thermal Margin: Thermal margin indicates how far the current operating temperature is below the maximum operating
temperature of the processor.

Neural Network: A neural network is analogous to the working of the human neural system. The
neural network is made up of ‘neurons’, which takes some input, processes it using some
mathematical operations (eg :convolution), and produces the output. The neurons are connected to
form the neural network.

LeNet: LeNet is a convolutional neural network (CNN) structure which was used in detecting
handwritten cheques by banks based on MNIST dataset. The model has 5 layers with learnable
parameters and hence it is named LeNet-5.

Some terms used henceforth
(for reference)

ResNet: It means residual network and it is also a convolutional neural network (CNN) architecture
which helped to overcome the “vanishing gradient” problem, making possible the construction of
networks with up to thousands of convolutional layers which performs better than shallow
networks.

MNIST: The MNIST database is a large database of handwritten digits that is commonly used for
training and testing various image processing systems in the field of machine learning. It contains
60,000 small square 28x28 pixels grayscale images of handwritten single digits between 0 to 9.

Cifar-10: The CIFAR-10 dataset is a collection of images that are commonly used to train machine
learning and computer vision algorithms. It contains 60,000 32x32 pixels color images in 10
different classes. It is one of the most widely used datasets.

Some terms used henceforth
(for reference)

ImageNet: ImageNet is a database of annotated photographs which can be used for research
purposes in computer vision. It can contain around 20000 classes. Convolutional neural networks
find patterns at the level of pixels (transfer learning).

Network: LeNet5 Dataset: MNIST Base Accuracy: 98.49%

Fixed Posit Parameters
(N, es, regime)

Accuracy (with Posit)
(%)

6, 2, 2 98.14

6, 3, 2 97.42

8, 2, 2 98.62

8, 3, 2 98.44

8, 3, 3 98.14

9, 3, 2 98.62

10, 2, 2 98.53

10, 3, 2 98.54

10, 6, 2 98.14

Network: ResNet18 Dataset: CIFAR10 Base Accuracy:82.21%

Fixed Posit Parameters
(N, es, regime)

Accuracy (with Posit)
(%)

6, 2, 2 60.11

8, 3, 2 76.37

8, 4, 2 60.11

9, 4, 2 76.37

9, 3, 2 80.73

10, 4, 2 80.73

10, 3, 2 81.82

10, 6, 2 60.11

Some Observations from the data:

1. For the same length of fraction, that is, for the same value of (N - es -
regime_length), accuracy remains almost the same.

Why? - A Posit Multiplier just multiplies the fractions of the two
operands, and just adds the exponent bits!

1. Generally, with the increase in the length of fraction bits, accuracy
increases as well!

Approximate Computing for Neural Networks
Using 4-2 approximate compressors
designed for integer multiplication

What does Approximate Computing mean?

Approximate Computing has
become a well-known computing
technique in recent times.

Some approximation would not
change the final output, but
might lead to large gains in
energy, circuit area, and
performance.

Why Approximate Computing?

Approximate Computing has the following pros when compared to the
conventional/exact computing:

● Error is an essential part of any computing process, and
approximate computing takes benefit of this error generated
in computing process.

● Approximate computing has an important application in image
processing.

Why Approximate Computing?

Approximate Computing has the following pros when compared to the
conventional/exact computing:

● AC (Approximate Computing) exploits the feature that many
systems and applications can tolerate some loss of accuracy
in the computation result.

● Computing becomes increasingly heavy with multimedia
processing, machine learning, data mining, recognition, etc.

State of the Art
(Transition from Posits to Approximate Computing)

Since fixed-posit designs might lead to a greater hardware
utilization, the focus of the second part of the project was to
incorporate approximation techniques, first for integer
multiplication, in order to reduce the hardware utilization and
the area utilization in neural networks, without affecting the
accuracy by a large amount!

Approximate fixed-posit multipliers is what we finally want to
achieve!

● The approximate
full adder has a
moderate MRED.

● The approximate
full adder is
slow, but it
consumes a low
power and area.

1. MRED (mean relative error distance) is used to evaluate the mean relative difference between an
approximate result and the accurate result.

Figure: Exact 4:2 Compressor Figure: Approximate 4:2 Compressor

Compressor Designs

Examples of some compressor Designs

There are several types of proposed compressor designs, out of which we
will be focusing on the following 7 designs:

● Yang2
● Lin
● Strollo1
● Strollo2
● Momeni
● Venka
● Sabetz

Figure: yang-2 Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 00 01 01 10 01 10 10 11 01 10 10 11 11 11 11 11

E 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 -1

Table: Truth Table for yang-2 Compressor

● The high-accuracy yang compressors proposed
in [1] only introduce at most four errors.

● “Yang-2” introduces two errors as shown in
the truth table below.

● The circuit design for “Yang-2” compressor
is shown in figure on the right side.

Yang-2

Figure: lin Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 00 01 01 10 01 10 10 11 01 10 10 11 10 11 11 10

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2

Table: Truth Table for lin Compressor

● The lin compressors proposed in [2] have an
XOR, an inverter, and a MUX-2 on the
critical path.

● The circuit design for “Lin” compressor is
shown in figure on the right side.

● “Lin” introduces only one error as shown in
the truth table below.

Lin

Figure: strollo1 Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 00 01 01 10 01 10 10 11 01 10 10 11 01 10 10 11

E 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1

Table: Truth Table for strollo-1 Compressor

● The strollo compressors proposed in [3]
uses the “stacking circuit” to propose
architectures of compressors.

● “Strollo-1” introduces four errors as shown
in the truth table below.

● The circuit design for “Strollo-1”
compressors is shown in figure on right
side.

Strollo-1

Figure: Strollo2 Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 00 01 01 10 01 10 10 10 01 10 10 11 10 11 11 11

E 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1

Table: Truth Table for stollo2 Compressor

● The strollo-2 compressors proposed in [3]
introduces two errors as shown in the truth
table below.

● The circuit design for “Strollo-2”
compressors is shown in figure on the right
side.

Strollo-2

Figure: momeni Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 01 01 01 01 01 10 10 11 01 10 10 11 01 11 11 11

E +1 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 -1

Table: Truth Table for momeni Compressor

● The low-accuracy “Momeni” compressor
introduces four errors as shown in the
truth table below.

● The circuit design for “Momeni” compressors
is shown in figure on the right side.

Momeni

Figure: venka Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 00 01 01 10 01 01 01 11 01 01 01 11 10 11 11 11

E 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 0 0 -1

Table: Truth Table for venka Compressor

● The venka compressors proposed in [4] has
significant performance advantages.

● “Venka” introduces five errors as shown in
the truth table below.

● The circuit design for “Venka” compressors
is shown in figure on the right side.

Venka

Figure: sabetz Compressor

x4…x1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

CS 01 01 01 01 01 11 01 11 01 11 01 11 11 11 11 11

E -1 0 0 -1 0 +1 -1 0 0 +1 -1 0 -1 0 0 -1

Table: Truth Table for sabetz Compressor

● The sabetz compressors proposed in [5]
introduces as many as eight error as shown
in the truth table below.

● The circuit design for “Sabetz” compressors
is shown in figure on the right side.

Sabetz

Our Proposal
Change the multiplication operation in the convolution function of
CNNs with approximate multiplication.

Use the compressor designs for approximate multiplication. We first
try approximation for integer multiplication. This can be later
extended to floating-point multiplication.

The neural networks are then simulated under these approximate
conditions.

Methodology
Coding the different compressors: The scheme uses half-adders,
full adders, exact compressors and approximate compressors

Normalising the inputs of the 8x8 multiplier, since the weights of
the neural networks are very small (nearly equal to zero).

Handling the sign separately (as our multiplier is unsigned).

RESULTS
Network: LeNet5 Dataset: MNIST

Base Accuracy (for floating-point multiplication): 98.49%

Base Accuracy (for exact integer multiplication): 98.55%

Yang2 Lin Strollo1 Momeni Venka Sabetz Strollo2

(a x b)
multiplication

98.48 98.56 98.36 13.84 98.47 9.61 98.58

(b x a)
multiplication

98.46 98.59 98.32 14.04 98.27 9.82 98.57

RESULTS
Network: ResNet18 Dataset: Cifar10

Base Accuracy (for floating-point multiplication): 82.21%

Base Accuracy (for exact integer multiplication): 53.18%

Yang2 Lin Strollo1 Momeni Venka Sabetz Strollo2

(a x b)
multiplication

58.07 58.65 55.18 10 48.23 10 59.37

(b x a)
multiplication

69.4 58.68 38.08 10 49.74 10 59.74

Observations

● Designs like Yang2, Lin, Strollo1, Strollo2, and Venka showed
accuracies very similar to(or in some cases, higher than) the
base accuracy(exact multiplication).

● On the other hand, some specific designs, such as Momeni and
Sabetz show very low accuracies, owing to their designs.

● Similarly, one interesting thing to observe is that the
results for (a x b) ≠ (b x a)!

● This variation is more sharply visible in larger networks. For
example, variation in Resnet18 is more clearly visible than in
Lenet5.

Conclusions

● Some of the designs such as Momeni and Sabetz were made in a
very ad hoc manner, and this can be observed from the results
that are being obtained as well!

● Approximation incorporated in most of the designs do not lead
to a much drop in accuracy (<1% in many cases), while it
reduces the hardware requirement by a much larger percentage.
This shows the potentials of approximation.

● (a×b) ≠ (b×a) for our approximate multiplier as there is
violation of the commutative property as proposed in [Should we
code differently when using approximate circuits.]

Future Work

● Approximate fixed-posit multipliers.

● Incorporation into other neural networks.

● axb or bxa?

Acknowledgements

We would like to acknowledge Kailash Prasad(PhD
Scholar, IIT Gandhinagar), Arpita Kabra(Senior
Undergrad., IITGn), and Mallikarjuna P.(MTech,
IITGn) for providing us the guidance and resources
whenever required.

We would also like to thank Prof. Joycee Mekie for
her continuous support, encouragement, and
motivation during the project.

Thank you for listening!

Hope you liked the presentation!

References:

1. Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, and Gennaro Di Meo,

"Comparisonand Extension of Approximate 4-2 Compressors for Low-Power Approximate Multipliers".

2. V. Gohil, S. Walia, J. Mekie, and M. Awasthi, “Fixed-posit: A floating-point representation for error-resilient

applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3341–3345,

2021.

3. Sumit Walia, Bachu Varun Tej, Arpita Kabra, Joydeep Devnath, and Joycee Mekie, "Fast and Low-Power

Quantized Fixed Posit High-Accuracy DNN Implementation".

4. Tianqi Kong and Shuguo Li, "Design and Analysis of Approximate 4-2 Compressors for High-Accuracy

Multipliers".

5. J. K. Devnath, N. Surana, and J. Mekie, “A mathematical approach towards quantization of floating point
weights in low power neural networks,” in 2020 33rd International Conference on VLSI Design and 2020

19th International Conference on Embedded Systems (VLSID),2020, pp. 177–182.
6. J. Lu, S. Lu, Z. Wang, C. Fang, J. Lin, Z. Wang, and L. Du, “Training deep neural networks using posit

number system,” in 2019 32nd IEEE International System-on-Chip Conference (SOCC), 2019.
7. Ankita Nandi, Chandan Kumar Jha and Joycee Mekie, “Should We Code Differently When Using

Approximate Circuits?

8. John L. Gustafson, "Posit Arithmetic", 10 October 2017.

References:

Link to GitHub Repository: https://github.com/arpitakabra/Approximate-Computing-for-Neural-
Networks

Link to simulation results sheet for reference:
https://docs.google.com/spreadsheets/d/1kAO4w9fM9XEo5n2gxIWQdGn60jpu7Sf4ovAzCXjycgQ/
edit?usp=sharing

https://github.com/arpitakabra/Approximate-Computing-for-Neural-Networks
https://github.com/arpitakabra/Approximate-Computing-for-Neural-Networks
https://docs.google.com/spreadsheets/d/1kAO4w9fM9XEo5n2gxIWQdGn60jpu7Sf4ovAzCXjycgQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1kAO4w9fM9XEo5n2gxIWQdGn60jpu7Sf4ovAzCXjycgQ/edit?usp=sharing

	Slide 1: Project Course CS-399 Supervised By: Prof. Joycee Mekie
	Slide 2: What is POSIT Number System?
	Slide 3: Why POSIT?
	Slide 4: Limitations of floating-point representation (IEEE 754)
	Slide 5: Advantages of POSIT
	Slide 6: Inefficiencies of POSIT
	Slide 7
	Slide 8
	Slide 9: Posit-to-FP
	Slide 10
	Slide 11
	Slide 12: 2. FP-to-Posit
	Slide 13
	Slide 14
	Slide 15: Some terms used henceforth (for reference)
	Slide 16: Some terms used henceforth (for reference)
	Slide 17: Network: LeNet5 Dataset: MNIST Base Accuracy: 98.49%
	Slide 18: Network: ResNet18 Dataset: CIFAR10 Base Accuracy:82.21%
	Slide 19: Some Observations from the data:
	Slide 20: Approximate Computing for Neural Networks Using 4-2 approximate compressors designed for integer multiplication
	Slide 21
	Slide 22
	Slide 23
	Slide 24: State of the Art (Transition from Posits to Approximate Computing)
	Slide 25
	Slide 26
	Slide 27: Examples of some compressor Designs
	Slide 28
	Slide 29
	Slide 30: Strollo-1
	Slide 31: Strollo-2
	Slide 32
	Slide 33: Venka
	Slide 34: Sabetz
	Slide 35: Our Proposal
	Slide 36: Methodology
	Slide 37: RESULTS
	Slide 38: RESULTS
	Slide 39: Observations
	Slide 40: Conclusions
	Slide 41: Future Work
	Slide 42: Acknowledgements
	Slide 43: Thank you for listening!
	Slide 44
	Slide 45

